skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fessler, Samantha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Postprandial hyperglycemia (PPHG) is detrimental to health and increases risk of cardiovascular diseases, reduced eyesight, and life-threatening conditions like cancer. Detecting PPHG events before they occur can potentially help with providing early interventions. Prior research suggests that PPHG events can be predicted based on information about diet. However, such computational approaches (1) are data hungry requiring significant amounts of data for algorithm training; and (2) work as a black-box and lack interpretability, thus limiting the adoption of these technologies for use in clinical interventions. Motivated by these shortcomings, we propose, DietNudge 1 , a machine learning based framework that integrates multi-modal data about diet, insulin, and blood glucose to predict PPHG events before they occur. Using data from patients with diabetes, we demonstrate that our model can predict PPHG events with up to 90% classification accuracy and an average F1 score of 0.93. The proposed decision-tree-based approach also identifies modifiable factors that contribute to an impending PPHG event while providing personalized thresholds to prevent such events. Our results suggest that we can develop simple, yet effective, computational algorithms that can be used as preventative mechanisms for diabetes and obesity management. 
    more » « less